The present and future disease burden of hepatitis C virus (HCV) infection with today’s treatment paradigm

H. Razavi,1,† I. Waked,2,† C. Sarrazin,3,† R. P. Myers,4,† R. Idilman,5,† F. Calinas,6,† W. Vogel,7,† M. C. Mendes Correa,8,† C. Hézode,9,† P. Lázaro,10,† U. Akarca,11 S. Aleman,12,13,† I. Balkh,14,† T. Berg,15,† F. Bhil,16 M. Bilodeau,17 A. J. Blasco,18 C. E. Brandão Mello,18,† P. Bruggmann,19,† M. Buti,20,† J. L. Calleja,21 H. Cheinquel,22 P. B. Christensen,23 M. Clausen,24 H. S. M. Coelho,25 M. E. Cramp,26 G. J. Dore,27 W. Doss,28 A. S. Duberg,29,30,† M. H. El-Sayed,31 G. Ergöör,32 G. Esmat,28,† K. Falconer,33 J. Félix,34 M. L. G. Ferraz,35 P. R. Ferreira,36 S. Frankova,37,† J. Garcia-Samaniego,38 J. Gerstof,39 J. A. Giria,40 F. L. Gonçalves Jr,41 E. Gower,1,† M. Gschwantler,42,† M. Guimarães Pessôa,43 S. J. Hindman,1,† H. Hofer,44 P. Husa,45 M. Kåber,33 K. D. E. Kaita,46,47 A. Kautz,48 S. Kaymakoglu,49 M. Krajden,50 H. Krarup,51 W. Laleman,52 D. Lavanchy,53 R. T. Marinho,54,† P. Marotta,55 S. Mauss,56 C. Moreno,57 K. Murphy,1 F. Negro,58,† V. Nemecek,59 N. Örmeci,60,† A. L. H. Övrehus,61 J. Parkes,62 K. Pasini,1,† K. M. Peltekian,62 A. Ramji,63 N. Reis,64 S. K. Roberts,65 W. M. Rosenberg,66,† F. Roudot-Thoraval,67,† S. D. Ryder,58,† R. Sarmento-Castro,69 D. Semela,70 M. Sherman,71,† G. E. Shiha,72 W. Sievert,73,† J. Sperl,74,† P. Stärkel,75 R. E. Stauber,75 A. J. Thompson,76 P. Urbanke,77 P. Van Damme,78,† I. van Thiel,48,79 H. Van Vlierberghe,65 D. Vandjick,80 H. Wedemeyer,81,32 N. Weis,83 J. Wiegand,14 A. Yosy,28 A. Zekry,84 M. Cornberg,82 B. Müllhaup85,5,† and C. Estes-1,† Center for Disease Analysis, Louisvile, Colorado, USA; 2National Liver Institute, Menoufiya, Egypt; 3J.W. Goethe University Hospital, Frankfurt, Germany; 4Liver Unit, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, AB, Canada; 5Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey; 6Gastroenterology Department, Centro Hospitalar de Lisboa Central – Hospital Santo António Caúchos, Lisboa, Portugal; 7Innsbruck Medical University, Innsbruck, Austria; 8School of Medicine-Universidade de São Paulo, São Paulo, Brazil; 9Service d’Hépato-Gastroentérologie, Hôpital Henri Mondor, Créteil, France; 10Advanced Techniques in Health Services Research (TAHSS), Madrid, Spain; 11Gastroenterology, Ege University, Izmir, Turkey; 12Department of Medicine Huddinge, Karolinska University Hospital, Stockholm, Sweden; 13Department of Gastroenterology and Hepatology/Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; 14Infectious Diseases, Ankara University, Ankara, Turkey; 15University of Leipzig, Leipzig, Germany; 16Gastroenterology Department, Ospedale Cantonale, Bellinzona, Switzerland; 17Liver Unit Department of Medicine, Université de Montréal, Montréal, QC, Canada; 18Department of Gastroenterology, Federal University of the State of Rio de Janeiro, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; 19Arad Centres for Addiction Medicine, Zurich, Switzerland; 20Hospital Vall d’Hebron, CIBERehd, Barcelona, Spain; 21Hospital Puerta de Hierro, Madrid, Spain; 22Hospital das Clinicas da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; 23Department of Infectious Diseases, Odense University Hospital, Odense, Denmark; 24Region Hospital Hovedstaden, Copenhagen, Denmark; 25Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; 26Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK; 27Kirby Institute, University of New South Wales, Sydney, NSW, Australia; 28Cairo University, Cairo, Egypt; 29Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden; 30School of Health and Medical Sciences, Örebro University, Örebro, Sweden; 31Ain Shams University, Cairo, Egypt; 32Public Health and Epidemiology, Dokuz Eylül University, Izmir, Turkey; 33Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; 34Exigo Consultores, Alhos Vedros, Portugal; 35Division of Gastroenterology, Federal University of São Paulo, São Paulo, Brazil; 36Division of Infectious Disease, Federal University of São Paulo, São Paulo, Brazil; 37Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; 38Hospital Carlos III, CIBERehd, Madrid, Spain; 39University of Copenhagen, Copenhagen, Denmark; 40Direção-Geral da Saúde, Lisboa, Portugal; 41Grupo de Estudo das Hepatites, Disciplina de Doenças Infecciosas, Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, UNICAMP, São Paulo, Brazil; 42Department of Internal Medicine IV, Wilhelmimnenspital, Vienna, Austria; 43Division of Gastroenterology and Hepatology, University of Western Ontario, London, ON, Canada; 44Department of Gastroenterology, University of Manitoba, Winnipeg, MB, Canada; 45Clinic of Infectious Diseases of the University Hospital Brno, Masaryk University Brno, Brno, Czech Republic; 46Section of Hepatology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada; 47Viral Hepatitis Investigative Unit, Health Sciences Centre, Winnipeg, MB, Canada; 48European Liver Patients Association, Sint-Truiden, Belgium; 49Gastroenterology, Istanbul University, Istanbul, Turkey; 50British Columbia Centre for Disease Control, University of British Columbia, Vancouver, BC, Canada; 51Department of Medical Gastroenterology and Section of Molecular Diagnostics, Clinic Biochemistry, Aalborg University Hospital, Aalborg, Denmark; 52University Hospitals Leuven, KU Leuven, Leuven, Belgium; 53Independent Consultant, Dogens, Switzerland; 54Gastroenterology Department, Centro Hospitalar de Lisboa Norte, Hospital Santa Maria, Lisboa, Portugal; 55Division of Gastroenterology, University of Western Ontario, London, ON, Canada; 56Heinrich-Heine University in Duesseldorf, Dusseldorf, Germany; 57Erasmus University Hospital, Université Libre de Bruxelles, Brussels.
SUMMARY. The disease burden of hepatitis C virus (HCV) is expected to increase as the infected population ages. A modeling approach was used to estimate the total number of viremic infections, diagnosed, treated and new infections in 2013. In addition, the model was used to estimate the change in the total number of HCV infections, the disease progression and mortality in 2013–2030. Finally, expert panel consensus was used to capture current treatment practices in each country. Using today’s treatment paradigm, the total number of HCV infections is projected to decline or remain flat in all countries studied. However, in the same time period, the number of individuals with late-stage liver disease is projected to increase. This study concluded that the current treatment rate and efficacy are not sufficient to manage the disease burden of HCV. Thus, alternative strategies are required to keep the number of HCV individuals with advanced liver disease and liver-related deaths from increasing.

Keywords: diagnosis, disease burden, epidemiology, HCV, hepatitis C, incidence, mortality, prevalence, treatment.

INTRODUCTION

It is estimated that >185 million people were infected with the hepatitis C virus (HCV) in 2005 in the world [1]. HCV infection can lead to liver damage resulting in liver fibrosis, cirrhosis, decompensated cirrhosis and hepatocellular carcinoma (HCC) [2]. Individuals with more advanced stages of liver disease may require transplantation, and HCV remains a leading indication for liver transplants [3].

The aim of this study was to estimate the current and future impact of HCV disease burden if the current treatment paradigm and response rate continued. A model was developed to forecast HCV disease progression and the number of cases at each stage of liver disease by country.

METHODOLOGY

Inputs

The historical epidemiology of HCV was gathered through a literature search, analysis of unpublished data and discussion with expert panels, as described previously [4]. When no input data were available, analogues (data from countries with a similar healthcare practice and/or risk factors) or expert inputs were used. Ranges were used to capture uncertainty in inputs with wider ranges implying greater uncertainty.
As shown previously [4], HCV epidemiology data were reported in different years. Therefore, a mathematical model was used to estimate the 2013 HCV-infected populations for all countries.

Model

A disease progression model was constructed in Microsoft Excel® (Microsoft Corp., Redmond, WA) to quantify the size of the HCV-infected population, by the liver disease stages, from 1950–2030. The size and impact of the HCV-infected population prior to 1950 were considered negligible for the purposes of this analysis. The model was set up for sensitivity and Monte Carlo analysis using Crystal Ball®, an Excel® add-in by Oracle®. Beta-PERT distributions were used for all uncertain inputs. The Excel® optimization add-in, Frontline Systems’ Solver, was used to calculate the number, age and gender distribution of the annual acute infections as described below.

Microsoft Excel was selected as a platform due to its transparency, availability and minimal need for operator training. The disease progression was modelled using the flow shown in Fig. 1 and calculations shown in Equation 1.

\[
\text{Total Cases}_{\text{Stage}, \text{Year}, \text{Age Cohort}} = \\
\left(\frac{4}{5}\right) \left(\text{Total Cases}_{\text{Stage}, \text{Year}, \text{Age Cohort}}\right) + \left(\frac{1}{3}\right) \left(\text{Total Cases}_{\text{Stage}, \text{Year}, \text{Age Cohort}}\right) + \\
\text{New Cases}_{\text{Stage}, \text{Year}, \text{Age Cohort}} - \\
\text{All Cause Mortality}_{\text{Stage}, \text{Year}, \text{Age Cohort}} - \\
\text{Progressed}_{\text{Stage}, \text{Year}, \text{Age Cohort}} - \\
\text{Cured}_{\text{Stage}, \text{Year}, \text{Age Cohort}}
\]

where:

\[
\text{New Cases}_{\text{Stage}, \text{Year}, \text{Age Cohort}} = \\
\left(\text{Total Cases}_{\text{Stage}, \text{Year}, \text{Age Cohort}} - \text{Progression Rate}_{\text{Stage}, \text{Year}, \text{Age Cohort}}\right)
\]

\[
\text{Background Mortality}_{\text{Stage}, \text{Year}, \text{Age Cohort}} = \\
\left(\text{Total Cases}_{\text{Stage}, \text{Year}, \text{Age Cohort}}\right) \left(\text{Adjusted Mortality Rate}_{\text{Age Cohort}}\right)
\]

\[
\text{Progressed}_{\text{Stage}, \text{Year}, \text{Age Cohort}} = \\
\left(\text{Total Cases}_{\text{Stage}, \text{Year}, \text{Age Cohort}}\right) \left(\text{Progression Rate}_{\text{Stage}, \text{Year}, \text{Age Cohort}}\right)
\]

\[
\text{Cured}_{\text{Stage}, \text{Year}, \text{Age Cohort}} = \\
\sum_{\text{Genotype}=1}^{w} \left(\text{Total Treated}_{\text{Genotype}, \text{Stage}, \text{Year}} \times \left(\text{Average SVR}_{\text{Genotype}, \text{Year}}\right)\right)
\]

The model started with the annual number of acute infections that progressed to chronic HCV (viremic) infection after accounting for spontaneous clearance of the virus. The progression of these new cases was followed along with all chronic infections from prior years. Unless specified, the scope of the model was limited to viremic, HCV ribonucleic acid (RNA) positive cases. Nonviremic cases (those which spontaneously cleared the virus or were treated and cured) were not considered even though they would test positive to HCV antibodies and may still progress to more advanced stages of liver disease despite viral clearance [5].

Total cases, at any stage of the disease, were calculated as described in Equation 1. The total number of cases at

Fig. 1 The flow of the HCV disease progression model.
each stage of the disease was tracked by age and gender. Five-year age cohorts were used through age 84, and those aged 85 and older were treated as one cohort. Each year, one fifth of the population in each age group, except for 85 and older, was moved to the next age cohort to simulate aging.

Total number of HCV infections

The historical number of HCV infections, and the age and gender distribution, were gathered through a literature search and discussions with an expert panel [4]. These data were used to estimate the historical number of new HCV infections as described below. The total annual number of viremic HCV cases and the age/gender distribution were calculated by adding the total cases for every stage of the disease outlined in Fig. 1.

New HCV infections

When available, the reported/calculated number of new infections was used. In most countries, the number of new HCV infections was not available and was back-calculated. Equation 2 describes that at any point in time, the total number of HCV infections equals the sum of all new infections minus the number of spontaneously cleared cases, all-cause and liver-related mortality and cured cases.

\[
\text{TotalHCVInfections}_{\text{Year}} = \sum_{t=1950}^{t} (\text{NewInfections}_t - \text{SpontaneouslyCured}_t - \text{Mortality}_t - \text{TreatedCured}_t)
\]

The number of new infections was back-calculated using a two-step process that first calculated the annual number of new cases, followed by the age and gender distribution of these cases. The annual number of new cases was calculated using the known number of total HCV infections in a given year in a country. The model calculated the annual number of all-cause mortality, liver-related deaths and cured cases as described below. A spontaneous clearance rate of 18% (15–45%) was used [6–8] except as noted below..

The Excel® optimization add-in, Solver, was used to determine an average number of new infections per year, which resulted in the right- and left-hand sides of Equation 2 becoming equal. However, the annual number of new cases did not remain flat since 1950. Thus, an annual relative incidence value was used to describe the change in the number of new infections over time. Relative incidence was set to one in 1950, and a discussion with the expert panel was used to identify the years when new infections peaked using the risk factors common in the country (nosocomial infections, injection drug use, etc). Peak years were typically in the early 1990s, prior to implementation of blood supply screening and before the potential implementation of needle exchange programmes for IDU. Discussions with the expert panel were also used to estimate any decline in relative incidence due to a reduction in risk factors, including blood screening and implementation of needle exchange programmes for IDU. A curve was fitted from 1950 to the estimated peak, and a second curve followed the decline in relative incidence. Excel® Solver was used to determine a constant that, when multiplied by the relative incidence, resulted in the right- and left-hand sides of Equation 2 becoming equal. This resulted in the estimated annual number of new cases to change over time.

When immigration from endemic high-risk countries was highlighted as an important source of new infections, the annual number of new cases due to immigration was calculated by gathering net annual immigration, by country of origin and from national databases, regarding the anti-HCV prevalence in the country of origin. Studies in Germany showed that prevalence in the Turkish population living in Germany was similar to those living in Turkey [9,10]. In countries where immigration was highlighted, the estimated annual number of new infections had two components – acute infections and immigrants. The forecasted disease burden was similar when new cases, due to net immigration, were grouped with acute infections vs. when they were treated as a separate population. In countries that reported age-specific data, the average age of immigrants was found to be 30 years. The viremic rate ranged from 62–82% [4], and 65–85% of acute infections progressed to chronic infections [6–8]. By grouping the immigrant cases with the acute cases, the progression to chronic HCV had the same impact as if the same population were adjusted for per cent viremic.

In the second step, the age and gender of the acute infections were calculated using the age and gender distribution of the total infected population in a given year. The Excel® optimization add-in, Frontline Solver, was used to back-calculate the age and gender distribution of the new infections in 1966 and every five years thereafter until the year of known distribution in the total infected population. The age and gender distribution in years 1950–1965 was set to equal to 1966 and trended linearly between the 5-year increments. Constraints were used to limit how the number of new infections was allocated by age and gender – ≤5% of new cases in a given year could be allocated to age cohort <14, and 70–85+ years old and ≤20% of new cases could be allocated to age cohorts between 15–69 years old. These constraints were relaxed when country-specific information was available regarding high level of infections in given years. For example, in countries where IDU was a major risk factor, the per cent of new infections allocated to specific age groups was increased.
Progression rates

Disease progression was simulated by multiplying the total number of cases at a particular stage of the disease by a progression rate to the next stage (Fig. 1). The rates were gathered from previous studies [6–8,11–16] or calculated using known number of HCC cases/mortality as explained below.

Fibrosis progression rates were derived from US data (Table 1). The reported number of new annual liver cancers (by gender) and liver cancer deaths in 1999–2009 from the US Surveillance, Epidemiology and End Results (SEER) programme was used to back-calculate the fibrosis progression rates required in the model to match published data. It was assumed that 90% of all liver cancers were HCC [17], and 36–40% of HCC cases were due to HCV [18,19]. Age-specific progression rates in the UK were used as guidance when back-calculating progression rates [20]. In this model, the UK data provided the most satisfactory results when compared to similar studies in other countries [12,13,21]. When actual number of HCV-related HCC cases, HCC deaths or decompensated cirrhosis cases was available in a country, the fibrosis progression rates were modified to fit reported data. In France, previously published progression rates were used [22]. In Egypt and Turkey, the F1-F2 progression rate was reduced by 20% to account for lower alcohol consumption. In Australia, the Kirby Institute reported the annual number of HCV cases by disease state [23]. The F1-F2, F2-F3 and F3-F4 were increased by 25% to fit reported data. This increase could be attributed to high rates of alcohol intake and a predominantly male-infected population [13]. In Portugal, a flat progression rate for all ages provided a more satisfactory result. The progression rates used in Portugal were as follows: F0 to F1 (11.7%), F1 to F2 (8.5%), F2 to F3 (12%), F3 to F4 (11.6%). In Egypt, the spontaneous clearance rate for the new infections was set to 33% (15–45%) among males and 45% (15–45%) among females. Additionally, the spontaneous clearance rate for both genders was 26.2% (22.7–30.2%) in England and 23% (15–45%) in Canada.

The number of new cases at a stage of the disease (New Cases stage x) was calculated by multiplying the progression rate and the total number of cases at the previous stage of the disease in the previous year (Total Cases stage x−1, Year y−1). As shown in Equation 1, the total number of cases was adjusted for aging, all-cause mortality and cured in any given year.

All-cause mortality

The all-cause mortality rates by age and gender were gathered from the Human Mortality Database [24] unless stated otherwise. The rates were adjusted for incremental increase in mortality due to injection drug use (IDU) and transfusion, as described previously [25]. Unless specified, a standard mortality ratio (SMR) of 10 (9.5–29.9) was used for the portion of the HCV-infected population who were active IDU between ages 15 and 44 [26–31]. An SMR of 2.1 (1.3–17.6) was applied to all ages for the portion of the population infected due to transfusion [32]. In all countries studied, new HCV infections due to transfusion were no longer a risk factor. A linear declining rate was applied to get the percent of total infections attributed to transfusion to zero by 2030. When country-specific all-cause mortality rate among HCV cases was available, it was used in place of the above mortality model.

Australia

Based on expert consensus, it was estimated that 38% of the infected population were active IDU in 2013. A national study reported that 1.2% of the viremic population were infected through transfusion [33].

Austria

In 2008, it was estimated that 24.6% of the HCV population were active IDU and 25% of the population were infected through transfusion [34].

Belgium

In 2004, IDU (27%) and blood transfusion (23%) were the primary risk factors for HCV [35].

Brazil

Based on data from a national study, it was estimated that 5.1% of the prevalent population were active IDU and that 14.8% of the prevalent population were infected through transfusion [36].

Canada

It was estimated that 22% of the prevalent population were active IDU and 11% were infected through transfusion in 2007 [37].

Czech Republic

It was estimated that in 1998, transfusion accounted for 15% of the HCV infection [38]. Transmission of HCV infection through transfusion has been declining since 1998 and is no longer considered a risk factor. The most common route of HCV transmission is through IDU. In 2012, 65.2% of individuals diagnosed with HCV reported past or present IDU [39]. In 2007, it was estimated that 32.4% of IDUs entering weaning programmes were anti-HCV positive [40].

Denmark

Only 4.6% of HCV infections were due to transfusion exposures in 2009 [41]. By contrast, 30% of HCV infections were active IDU. An IDU SMR of 18 was chosen, as it results in an annual IDU mortality of ~2%, which was
Table 1 HCV disease progression rates

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Back-calculated progression rates – males, %</td>
<td></td>
</tr>
<tr>
<td>F0 to F1</td>
<td>5.3</td>
<td>5.3</td>
<td>6.4</td>
<td>6.4</td>
<td>5.2</td>
<td>5.2</td>
<td>3.8</td>
<td>3.8</td>
<td>13.9</td>
<td>13.9</td>
<td>17.1</td>
<td>17.1</td>
<td>19.4</td>
<td>19.4</td>
<td>21.8</td>
<td>21.8</td>
<td>17.9</td>
<td>17.9</td>
<td></td>
</tr>
<tr>
<td>F1 to F2</td>
<td>3.8</td>
<td>3.8</td>
<td>4.7</td>
<td>4.7</td>
<td>3.8</td>
<td>3.8</td>
<td>2.7</td>
<td>2.7</td>
<td>10.1</td>
<td>10.1</td>
<td>12.4</td>
<td>12.4</td>
<td>14.1</td>
<td>14.1</td>
<td>15.8</td>
<td>15.8</td>
<td>13.0</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>F2 to F3</td>
<td>5.4</td>
<td>5.4</td>
<td>6.6</td>
<td>6.6</td>
<td>5.3</td>
<td>5.3</td>
<td>3.9</td>
<td>3.9</td>
<td>14.3</td>
<td>14.3</td>
<td>17.5</td>
<td>17.5</td>
<td>19.9</td>
<td>19.9</td>
<td>22.4</td>
<td>22.4</td>
<td>18.3</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td>F3 to Cirrhosis</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>0.8</td>
<td>2.5</td>
<td>2.5</td>
<td>5.7</td>
<td>5.7</td>
<td>8.8</td>
<td>8.8</td>
<td>4.8</td>
<td>4.8</td>
<td>9.9</td>
<td>9.9</td>
<td>19.1</td>
<td>19.1</td>
<td>19.1</td>
<td>19.1</td>
<td></td>
</tr>
<tr>
<td>F3 to HCC</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Cirrhosis to HCC</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.9</td>
<td>0.9</td>
<td>1.4</td>
<td>1.4</td>
<td>2.4</td>
<td>2.4</td>
<td>3.9</td>
<td>3.9</td>
<td>3.9</td>
<td>3.9</td>
<td></td>
</tr>
</tbody>
</table>

Back-calculated progression rates – females, %

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F0 to F1</td>
<td>4.4</td>
<td>4.4</td>
<td>5.4</td>
<td>5.4</td>
<td>4.3</td>
<td>4.3</td>
<td>3.1</td>
<td>3.1</td>
<td>11.6</td>
<td>11.6</td>
<td>14.3</td>
<td>14.3</td>
<td>16.2</td>
<td>16.2</td>
<td>18.2</td>
<td>18.2</td>
<td>14.9</td>
<td>14.9</td>
<td></td>
</tr>
<tr>
<td>F1 to F2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.9</td>
<td>3.9</td>
<td>3.1</td>
<td>3.1</td>
<td>2.3</td>
<td>2.3</td>
<td>8.4</td>
<td>8.4</td>
<td>10.4</td>
<td>10.4</td>
<td>11.7</td>
<td>11.7</td>
<td>13.2</td>
<td>13.2</td>
<td>10.8</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td>F2 to F3</td>
<td>4.5</td>
<td>4.5</td>
<td>5.5</td>
<td>5.5</td>
<td>4.4</td>
<td>4.4</td>
<td>3.2</td>
<td>3.2</td>
<td>11.9</td>
<td>11.9</td>
<td>14.6</td>
<td>14.6</td>
<td>16.6</td>
<td>16.6</td>
<td>18.6</td>
<td>18.6</td>
<td>15.3</td>
<td>15.3</td>
<td></td>
</tr>
<tr>
<td>F3 to Cirrhosis</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.6</td>
<td>2.1</td>
<td>2.1</td>
<td>4.7</td>
<td>4.7</td>
<td>7.4</td>
<td>7.4</td>
<td>4.0</td>
<td>4.0</td>
<td>8.3</td>
<td>8.3</td>
<td>15.9</td>
<td>15.9</td>
<td>15.9</td>
<td>15.9</td>
<td></td>
</tr>
<tr>
<td>F3 to HCC</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Cirrhosis to HCC</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.7</td>
<td>0.7</td>
<td>1.2</td>
<td>1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td></td>
</tr>
</tbody>
</table>

Disease progression Reported progression rates Source

- **Acute HCV spontaneous clearance**: 18.0% (15.0–45.0%) [6–8]
- **Diur sens ascites to diur refractory ascites**: 6.7% (4.0–9.4%) [6–8,11–16]
- **Diur sens ascites to liver-related death**: 11.0% (7.7–14.3%) [6–8,11–16]
- **Variceal hem. to liver-related death (year 1)**: 40.0% (33.4–46.6%) [6–8,11–16]
- **Variceal hem. to liver-related death (subyears)**: 13.0% (8.5–17.5%) [6–8,11–16]
- **Hepatic enceph. to liver-related death (year 1)**: 68.0% (65.9–70.1%) [6–8,11–16]
- **Hepatic enceph. to liver-related death (subyears)**: 40.0% (37.8–42.2%) [6–8,11–16]
- **Diur refractory ascites to liver-related death**: 33.0% (28.0–38.0%) [6–8,11–16]
- **HCC to liver-related death (year 1)**: 70.7% (43–77.0%) [15,106]
- **HCC to liver-related death (subyears)**: 16.2% (11–23.0%) [106]
- **Liver transplant to liver-related death (year 1)**: 33.1–10.7% (SD 2.8–0.4%) [3,107]
- **Liver transplant to liver-related death (subyears)**: 3.9–4.8% (SD 7.6–1.0%) [3,107]
consistent with the literature [42,43]. Nosocomial transmission was associated with 5% of cases reported to the National Registry of Communicable Diseases in 2009–2011. Fewer than half of these infections were acquired in Denmark before screening of blood donors was initiated in 1991, with the remainder originating from hospitals outside of Denmark [44–46]. Sexually transmitted cases were on the rise, with an incidence of HCV infection of 0.4% in the MSM population [47].

Egypt
Background mortality rates by age group and gender from 1950 to 1989 were calculated using United Nations (UN) mortality data [48]. For 1990–2011, mortality rates reported by the World Health Organization (WHO) were used [49].

It was estimated that 0.5% of the prevalent population were active IDU based upon the HCV prevalence rate in Egyptian IDU [50] and total IDU population in Egypt [51]. It was estimated that 24.3% of the prevalent population were infected through transfusion, according to EDHS [52]. Excess diabetes in the HCV prevalent population, as compared to the general population, was 9.7% [53], and a standard hazard ratio for hospitalization was used as an analogue for excess mortality in this population (SMR = 2.1) [54].

England
In 2004, there were an estimated 59 100 active IDU with HCV (40%) [55]. From 1996 to 2012, 2% of laboratories reported transfusion as a risk factor [55].

France
Based on data from a national study, it was estimated that 26% of the prevalent population were IDU and that 35% were infected through transfusion in 2004 [56].

Germany
An estimated 45.5% of the infected population reported a primary risk factor for IDU [57], and approximately one-third was thought to be active IDU. Approximately 17.4% of HCV infections were from transfusion [57].

Portugal
Age group and gender-specific mortality rates from the National Institute of Statistics (INE) were used for years 1982–2012 [58]. Using published data and expert panel input, it was estimated that 1% of the overall infected population was active IDU in 1980, increasing to 12.8% in 2000, then decreasing to 7.9% in 2005, and finally decreasing to 1% in 2012 and continuing at 1% thereafter [59,60]. Increased mortality among active IDU was estimated using an SMR of 11.6 for individuals between 15 and 44 years of age. This was based on a study of drug-related mortality in eight European countries, including Portugal [61], and was adjusted to account for gender differences [58,62]. It was estimated that 15.2% of the HCV population were infected through transfusion [63].

Spain
All-cause mortality rates for the years 1970–2011 were estimated by 5-year age and gender cohorts using death statistics from INE [64]. It is estimated that from 1994 to 1996, transfusion accounted for 25.5% of the transmission of HCV infection, whereas past or present IDU accounted for an estimated 10% [65]. Transmission of HCV infection through transfusion and IDU has been declining since 1996. Currently, the most common route of HCV infection is through nosocomial infection, accounting for approximately 73% of infections in 2005 [66].

Sweden
The non-liver-related mortality in the HCV cohort in Sweden was studied in detail and published [67]. A separate adjustment for IDU and transfusion risk factors was not necessary. Increased mortality among the HCV viremic population was accounted for using SMRs by 5-year age and gender cohorts, as identified through the Swedish HCV cohort from 1990 to 2003. SMRs were calculated using a 6-month lag time after HCV notification to reduce the risk of selection bias.

Switzerland
Mortality data by the Swiss Federal Statistics Office (FSO) [68] were used to estimate rates for all-cause mortality. An SMR of 5.5 was used for active IDU cases due to the effective harm reduction systems in place for people who use drugs. Approximately 21% (15 000) of the anti-HCV positive population were active IDU. This figure was derived from an estimated total of 25 000 people [69] with problematic heroin use and an anti-HCV prevalence of approximately 60% [70,71]. Approximately 11% of HCV infections were from transfusion [72].

Turkey
All-cause mortality for the years 2009–2012 was estimated using published death statistics from the Turkish Statistical Institute [73–75]. Historical mortality for the years 1950–2008 was estimated using 5-year Turkish death statistics provided by the UN [76]. It is estimated that transfusions accounted for 35.3% of the transmission of HCV infection, whereas past or present IDU accounted for an estimated 1.4% [77].

Diagnosed
The total number of diagnosed cases was collected and reported previously [4]. To estimate current and future total diagnosed cases, it was assumed that the number of newly diagnosed cases stayed the same as the last reported year.
Treated & cured

As described previously [4], analysis of pegylated interferon (Peg-IFN) or ribavirin (RBV) units sold, or national data, were used to estimate the total number of treated HCV patients. It was assumed that the number of treated patients stayed constant between 2011 and 2013. It was also assumed that the number of treated patients for each genotype was proportional to the genotype distribution of the HCV-infected population [4].

The annual number of cured patients was estimated using the average sustained viral response (SVR) rate in a given year. A separate average SVR was used for the major genotypes, as shown in Table 2. Different methods were used to estimate the average SVR. All countries took into consideration a weighted average of different treatment options in a given year – interferon-based therapy in combination with RBV (dual therapy) or with RBV and a protease inhibitor (PI) (triple therapy). Some also took into consideration the percentage of the population who were treatment experienced and treatment naive on each treatment option, while other countries took into account the disease stages of the patients being treated (e.g. F1, F2, F3 and F4). In 2013, the average SVRs for all countries studies were as follows: G1 – 53% (38–70%), G2 – 72% (50–90%), G3 – 64% (40–71%), G4 – 50% (38–61%). The country-specific SVR by genotype is shown in Table 2.

The number of cured patients from all genotypes was summed by stage of the disease and distributed proportionally among age eligible cohorts (see below). If the treatment protocols in a country recommended treatment of patients aged 20–69, the number of cured patients was distributed based on the number of cases in each cohort between ages 20 and 69, and it was assumed that no one younger than 20 or older than 69 was treated and cured.

Treatment protocols

The pool of patients who could be treated was impacted by explicit or implicit treatment protocols. Explicit protocols were determined by national or international guidelines, whereas implicit protocols were determined by actual practice in the country. In 2013, decompensated cirrhotic patients were considered ineligible in all countries.

According to the literature, approximately 40–60% of HCV patients are eligible for Peg-IFN/RBV [78,79]. The definition of eligibility included contraindications to the drugs (e.g. psychiatric conditions) as well as patient’s preference. In this analysis, 20–65% of the patients were considered treatment eligible (Table 2) for standard of care. The standard of care varied across countries and genotypes. High and low SVR rates for genotype 1 (Table 2) were indicative of availability of triple therapy (Peg-IFN + RBV + PI). High SVR rates were observed when triple therapy was made available to early-stage genotype 1 patients, while low SVR rates were observed when triple therapy was restricted to patients with late-stage liver disease. The numbers reported here represent a weighted average of all patients and therapies.

In each country, the expert panel provided the most common stages of fibrosis considered for treatment (see Table 2). Many countries use, or are starting to use, non-invasive testing methods to determine the level of fibrosis on patients. However, the Metavir scale is still the gold standard, and it was used in this model to represent the severity/stage of liver fibrosis. The age of the patients was also considered. Table 2 outlines the most common age bands considered for treatment. The data presented here do not imply that patients with lower Metavir score or older/younger patients were not treated in each country. Instead, the data provided a range for the majority of treated patients.

Future treatment protocols

In this analysis, it was assumed that the future treatment paradigm will remain the same as today. Thus, all assumptions (the number of acute cases, treated patients, per cent of patients eligible for treatment, treatment restrictions, the number of newly diagnosed annually and the average SVR by genotype) were kept the constant in future years.

RESULTS

The results of the analysis for 2013 are shown in Table 2. Figure 2 shows the age distribution of the HCV-infected population by country. Table 3 compares the change in HCV disease burden in 2013 and 2030, while Figs 3 and 4 show the projected HCV disease burden between 1950 and 2030. It should be noted that decompensated cirrhosis figures excluded those who received a liver transplant.

Australia

Changes over time in incidence were based upon published estimates of annual new cases [80]. New cases peaked in 1999 and have since declined, with the main risk factor being IDU [33]. An estimated 8900 new cases occurred in 2013.

Based on expert consensus, it was estimated that approximately 50% of treated patients in 2013 were classified as F0/1 with the remaining patients classified as F2/3 or cirrhosis.

In 2013, the total number of viremic infections was estimated at 233 400 (179 000–246 000) and is projected to peak in 2025 at 254 600 cases and increase by 5% from 2013 to 2030. The number of HCC cases in 2013 was estimated at 590 cases and is forecasted to increase by 245% by 2030. Similarly, the number of liver-related deaths will increase by 230% from a base of 530 deaths, while decompensated and compensated cirrhosis will
<table>
<thead>
<tr>
<th>Country's population (000)</th>
<th>Australia</th>
<th>Austria</th>
<th>Belgium</th>
<th>Brazil</th>
<th>Canada</th>
<th>Czech Republic</th>
<th>Denmark</th>
<th>Egypt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23,200</td>
<td>8,400</td>
<td>10,800</td>
<td>200,100</td>
<td>35,000</td>
<td>10,600</td>
<td>5,600</td>
<td>82,600</td>
</tr>
<tr>
<td>Total viremic infections (000)</td>
<td>237 (180-250)</td>
<td>25 (8-35)</td>
<td>67 (25-50)</td>
<td>194 (1410-2200)</td>
<td>252 (180-315)</td>
<td>43 (22-52)</td>
<td>21 (17-27)</td>
<td>5989 (4575-6705)</td>
</tr>
<tr>
<td>Viremic prevalence (%)</td>
<td>1.0 (0.8-1.1)</td>
<td>0.3 (0.1-0.4)</td>
<td>0.6 (0.2-0.7)</td>
<td>1.0 (0.7-1.1)</td>
<td>0.7 (0.5-0.9)</td>
<td>0.4 (0.2-0.5)</td>
<td>0.4 (0.3-0.5)</td>
<td>7.3 (5.5-8.1)</td>
</tr>
<tr>
<td>Total diagnosed (viremic)</td>
<td>200,500</td>
<td>9400</td>
<td>28,700</td>
<td>300,000</td>
<td>176,400</td>
<td>13,100</td>
<td>12,300</td>
<td>868,200</td>
</tr>
<tr>
<td>- Total cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Annual newly diagnosed</td>
<td>8400</td>
<td>600</td>
<td>2900</td>
<td>10,000</td>
<td>7600</td>
<td>800</td>
<td>700</td>
<td>110,000</td>
</tr>
<tr>
<td>- Diagnosis rate (%)</td>
<td>86</td>
<td>37</td>
<td>43</td>
<td>15</td>
<td>70</td>
<td>31</td>
<td>59</td>
<td>15</td>
</tr>
<tr>
<td>- Newly diagnosed rate (%)</td>
<td>3.6</td>
<td>2.4</td>
<td>4.2</td>
<td>0.5</td>
<td>3.0</td>
<td>1.9</td>
<td>3.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Treated & cured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Annual number treated</td>
<td>2600</td>
<td>1100</td>
<td>710</td>
<td>11,700</td>
<td>3600</td>
<td>880</td>
<td>100</td>
<td>65,000</td>
</tr>
<tr>
<td>- Annual number cured</td>
<td>1500</td>
<td>700</td>
<td>380</td>
<td>5000</td>
<td>3000</td>
<td>480</td>
<td>60</td>
<td>31,200</td>
</tr>
<tr>
<td>- Average SVR (%)</td>
<td>58</td>
<td>64</td>
<td>54</td>
<td>43</td>
<td>83</td>
<td>55</td>
<td>60</td>
<td>48</td>
</tr>
<tr>
<td>- Treatment rate (%)</td>
<td>1.1</td>
<td>4.2</td>
<td>1.1</td>
<td>0.6</td>
<td>1.4</td>
<td>2.1</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td>New infections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Total cases</td>
<td>8800</td>
<td>580</td>
<td>910</td>
<td>12,700</td>
<td>5600</td>
<td>1,400</td>
<td>350</td>
<td>168,400</td>
</tr>
<tr>
<td>- Infection rate (per 100K)</td>
<td>38</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>16</td>
<td>13</td>
<td>6</td>
<td>204</td>
</tr>
<tr>
<td>- New CHC cases</td>
<td>7200</td>
<td>470</td>
<td>690</td>
<td>10,400</td>
<td>4300</td>
<td>1200</td>
<td>290</td>
<td>102,300</td>
</tr>
<tr>
<td>Risk factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Number of active IDU</td>
<td>88,700</td>
<td>6250</td>
<td>18,120</td>
<td>98,880</td>
<td>54,560</td>
<td>13,790</td>
<td>6290</td>
<td>9980</td>
</tr>
<tr>
<td>- % Active IDU</td>
<td>38</td>
<td>25</td>
<td>27</td>
<td>5</td>
<td>22</td>
<td>32</td>
<td>30</td>
<td>0.2</td>
</tr>
<tr>
<td>- Previous blood transfusion</td>
<td>1980</td>
<td>49 (10)</td>
<td>10,090</td>
<td>286,920</td>
<td>26,910</td>
<td>750</td>
<td>780</td>
<td>1,455,360</td>
</tr>
<tr>
<td>- % Previous blood transfusion</td>
<td>1</td>
<td>19</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td>2</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- All cases</td>
<td>2220</td>
<td>420</td>
<td>1160</td>
<td>34,700</td>
<td>2820</td>
<td>400</td>
<td>330</td>
<td>153,500</td>
</tr>
<tr>
<td>- All cause mortality</td>
<td>1700</td>
<td>320</td>
<td>870</td>
<td>28,700</td>
<td>2100</td>
<td>320</td>
<td>250</td>
<td>120,500</td>
</tr>
<tr>
<td>- Liver related mortality</td>
<td>530</td>
<td>100</td>
<td>290</td>
<td>5000</td>
<td>720</td>
<td>80</td>
<td>80</td>
<td>33,000</td>
</tr>
<tr>
<td>Current treatment protocols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- % Treatment eligible</td>
<td>60</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>- Treated stages - G1</td>
<td>>= F1</td>
<td>>= F1</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F0</td>
<td>>= F2</td>
<td>>= F2</td>
</tr>
<tr>
<td>- Treated stages - G2</td>
<td>>= F1</td>
<td>>= F1</td>
<td>>= F0</td>
<td>>= F1</td>
<td>>= F2</td>
<td>>= F0</td>
<td>>= F2</td>
<td>>= F2</td>
</tr>
<tr>
<td>- Treated stages - G3</td>
<td>>= F1</td>
<td>>= F1</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F0</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F2</td>
</tr>
<tr>
<td>- Treated stages - G4</td>
<td>>= F1</td>
<td>>= F1</td>
<td>>= F2</td>
<td>>= F1</td>
<td>>= F2</td>
<td>>= F0</td>
<td>>= F2</td>
<td>>= F2</td>
</tr>
<tr>
<td>- SVR - G1 (%)</td>
<td>47</td>
<td>60</td>
<td>60</td>
<td>38</td>
<td>60</td>
<td>48</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>- SVR - G2 (%)</td>
<td>75</td>
<td>90</td>
<td>65</td>
<td>50</td>
<td>70</td>
<td>70</td>
<td>74</td>
<td>70</td>
</tr>
<tr>
<td>- SVR - G3 (%)</td>
<td>70</td>
<td>70</td>
<td>40</td>
<td>50</td>
<td>70</td>
<td>70</td>
<td>71</td>
<td>70</td>
</tr>
<tr>
<td>- SVR - G4 (%)</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>38</td>
<td>48</td>
<td>48</td>
<td>60</td>
<td>48</td>
</tr>
<tr>
<td>Country’s population (000)</td>
<td>England</td>
<td>France</td>
<td>Germany</td>
<td>Portugal</td>
<td>Spain</td>
<td>Sweden</td>
<td>Switzerland</td>
<td>Turkey</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>53 700</td>
<td>63 800</td>
<td>81 800</td>
<td>10 700</td>
<td>47 000</td>
<td>9500</td>
<td>7900</td>
<td>76 500</td>
<td></td>
</tr>
<tr>
<td>Total viremic infections (000)</td>
<td>144</td>
<td>195</td>
<td>267</td>
<td>125</td>
<td>473</td>
<td>41</td>
<td>83</td>
<td>514</td>
</tr>
<tr>
<td>Viremic prevalence (%)</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>(0.2–0.4)</td>
<td>(0.1–0.4)</td>
<td>(0.2–0.5)</td>
<td>(0.9–1.4)</td>
<td>(0.8–1.2)</td>
<td>(0.2–0.5)</td>
<td>(0.4–1.1)</td>
<td>(0.4–0.8)</td>
<td></td>
</tr>
<tr>
<td>Total diagnosed (viremic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cases</td>
<td>49 700</td>
<td>134 100</td>
<td>153 000</td>
<td>40 800</td>
<td>190 100</td>
<td>32 800</td>
<td>32 600</td>
<td>81 300</td>
</tr>
<tr>
<td>Annual newly diagnosed</td>
<td>5600</td>
<td>9000</td>
<td>4000</td>
<td>1300</td>
<td>15 300</td>
<td>1500</td>
<td>1100</td>
<td>5500</td>
</tr>
<tr>
<td>Diagnosis rate (%)</td>
<td>35</td>
<td>69</td>
<td>57</td>
<td>33</td>
<td>40</td>
<td>81</td>
<td>39</td>
<td>16</td>
</tr>
<tr>
<td>Newly diagnosed rate (%)</td>
<td>3.9</td>
<td>4.6</td>
<td>1.5</td>
<td>1.0</td>
<td>3.2</td>
<td>3.8</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Treated & cured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual number treated</td>
<td>5400</td>
<td>10 100</td>
<td>12 700</td>
<td>800</td>
<td>9800</td>
<td>1100</td>
<td>1100</td>
<td>4200</td>
</tr>
<tr>
<td>Annual number cured</td>
<td>3800</td>
<td>5300</td>
<td>7000</td>
<td>700</td>
<td>4900</td>
<td>600</td>
<td>700</td>
<td>2000</td>
</tr>
<tr>
<td>Average SVR (%)</td>
<td>70</td>
<td>52</td>
<td>55</td>
<td>88</td>
<td>50</td>
<td>55</td>
<td>64</td>
<td>48</td>
</tr>
<tr>
<td>Treatment rate (%)</td>
<td>3.8</td>
<td>5.2</td>
<td>4.7</td>
<td>0.7</td>
<td>2.1</td>
<td>2.8</td>
<td>1.3</td>
<td>0.8</td>
</tr>
<tr>
<td>New infections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cases</td>
<td>4000</td>
<td>4200</td>
<td>5000</td>
<td>810</td>
<td>2800</td>
<td>1400</td>
<td>1050</td>
<td>5300</td>
</tr>
<tr>
<td>Infection rate (per 100K)</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>15</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>New CHC cases</td>
<td>2900</td>
<td>3400</td>
<td>4100</td>
<td>670</td>
<td>2300</td>
<td>1100</td>
<td>860</td>
<td>4400</td>
</tr>
<tr>
<td>Risk factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of active IDU</td>
<td>56 900</td>
<td>50 600</td>
<td>40 400</td>
<td>1250</td>
<td>16 560</td>
<td>12 200</td>
<td>17 400</td>
<td>2420</td>
</tr>
<tr>
<td>% Active IDU</td>
<td>40</td>
<td>26</td>
<td>15</td>
<td>1</td>
<td>4</td>
<td>30</td>
<td>21</td>
<td>0.5</td>
</tr>
<tr>
<td>Previous blood transfusion</td>
<td>2400</td>
<td>44 600</td>
<td>29 200</td>
<td>11 580</td>
<td>12 060</td>
<td>1800</td>
<td>8100</td>
<td>134 190</td>
</tr>
<tr>
<td>% Previous blood transfusion</td>
<td>2</td>
<td>23</td>
<td>11</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All cases</td>
<td>1490</td>
<td>4900</td>
<td>5200</td>
<td>1560</td>
<td>5500</td>
<td>9300</td>
<td>9800</td>
<td>10 300</td>
</tr>
<tr>
<td>All cause mortality</td>
<td>1100</td>
<td>3300</td>
<td>3900</td>
<td>670</td>
<td>3600</td>
<td>750</td>
<td>600</td>
<td>8300</td>
</tr>
<tr>
<td>Liver related mortality</td>
<td>390</td>
<td>1600</td>
<td>1300</td>
<td>890</td>
<td>1900</td>
<td>170</td>
<td>380</td>
<td>2000</td>
</tr>
<tr>
<td>Current treatment protocols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment age</td>
<td>15 - 64</td>
<td>15 - 74</td>
<td>0 - 74</td>
<td>15 - 64</td>
<td>15 - 64</td>
<td>15 - 64</td>
<td>20 - 69</td>
<td>15 - 69</td>
</tr>
<tr>
<td>% Treatment eligible</td>
<td>60</td>
<td>60</td>
<td>50</td>
<td>65</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>Treated stages - G1</td>
<td>>= F0</td>
<td>>= F0</td>
<td>>= F0</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F0</td>
</tr>
<tr>
<td>Treated stages - G2</td>
<td>>= F0</td>
<td>>= F0</td>
<td>>= F0</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F2</td>
</tr>
<tr>
<td>Treated stages - G3</td>
<td>>= F0</td>
<td>>= F0</td>
<td>>= F0</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F2</td>
</tr>
<tr>
<td>Treated stages - G4</td>
<td>>= F0</td>
<td>>= F0</td>
<td>>= F0</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F2</td>
<td>>= F2</td>
</tr>
<tr>
<td>SVR – G1 (%)</td>
<td>70</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>40</td>
<td>61</td>
<td>48</td>
</tr>
<tr>
<td>SVR - G2 (%)</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>80</td>
<td>85</td>
<td>73</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>SVR - G3 (%)</td>
<td>70</td>
<td>60</td>
<td>70</td>
<td>70</td>
<td>50</td>
<td>65</td>
<td>70</td>
<td>48</td>
</tr>
<tr>
<td>SVR - G4 (%)</td>
<td>48</td>
<td>55</td>
<td>48</td>
<td>60</td>
<td>48</td>
<td>40</td>
<td>61</td>
<td>48</td>
</tr>
</tbody>
</table>
increase by 190% and 175% from a base of 1430 and 13 850 cases in 2013.

Austria

The annual number of new cases is considered to have peaked in 1991 due to high-risk behaviours and a contaminated blood supply, and then to have decreased sharply following blood screening and harm reduction efforts. In 2013, it was estimated that there were 580 new infections.

The total number of viremic infections peaked in 2003, with 30 100 cases, declined to 25 400 (8320–34 500) by 2013 and is forecasted to further decline to 14 000 cases by 2030. The number of HCC cases in 2013 was estimated at 110 cases and was forecasted to increase by 35% by 2030. Similarly, the number of liver-related deaths will increase 25% from a base of 100. Decompensated cirrhosis and compensated cirrhosis infections will peak in 2020, at 25% and 10% above the 2013 base of 200 and 2450, and will then decrease to 10% and 20% of the base.

Belgium

The annual number of new cases is considered to have peaked in 1989 due to high-risk behaviours and a contaminated blood supply, and then to have decreased sharply following blood screening and harm reduction efforts. In 2013, it was estimated that there were 910 new infections.

The total number of viremic infections peaked in 2003, with 72 900 cases, declined to 67 100 (24 800–78 600) by 2013 and is forecasted to further decline to 47 700 by 2030. The number of HCC cases in 2013 was estimated at 300 cases and was forecasted to increase by 110% by 2030. Similarly, the number of liver-related deaths will increase by 95% from a base of 290, while decompensated cirrhosis and compensated cirrhosis infections will increase 70% and 65% from a base of 820 and 7060 in 2013.

Brazil

It was estimated that new cases peaked in 1999 and have since declined, due to the widespread adoption of blood screening, to an estimated 11 200 new cases in 2013.

The total number of viremic infections peaked in 1996, with 2 255 000 cases, declined to 1 938 700 (1 411 500–2 098 700) cases by 2013 and is forecasted to further decline by 35% by 2030. The number of HCC cases in 2013 was estimated at 9710 cases and was forecasted to increase by 95% by 2030. Similarly, the number of liver-related deaths will increase by 85% from 9000 deaths in 2013. Cases of decompensated and compensated cirrhosis will increase 65% and 45% from a base of 27 500 and 222 090 cases in 2013, respectively.

Canada

Relative changes in incidence by year were derived from a Public Health Agency of Canada analysis that included historical estimates of new cases [81]. The peak of new cases occurred in 1982, with IDU being the main risk factor [37]. In 2013, 5570 new cases are estimated to have occurred.

The total number of viremic infections peaked in 2003, with 260 000 cases, declined to 252 000 (177 900–314 800) cases by 2013 and is forecasted to further decline by 15% by 2030. The number of HCC cases in 2013 was estimated at 730 cases and was forecasted to increase by 190% by 2030. Similarly, the number of liver-related deaths will increase by 150% from 720 deaths in 2013. Cases of decompensated and compensated cirrhosis will increase 90% and 95% from a base of 1790 and 18 510 cases in 2013, respectively.

Czech Republic

The annual number of new cases is considered to have peaked in 1999 and began to steadily decrease thereafter. It is believed that the number of new cases arising annually is relatively stable in the light of continued transmission through IDU. In 2013, there were an estimated 1400 new cases of HCV.

In 2013, the total number of viremic infections was estimated at 42 500 (21 600–51 800), and it was forecasted to increase to 43 300 cases in 2022 before declining to 42 200 by 2030. The number of HCC cases in 2013 was estimated at 90 cases, and it was forecasted to increase by 85% percentage by 2030. Similarly, the number of liver-related deaths will increase by 90% from a base of 80, while decompensated and compensated cirrhosis will increase 100% and 105% from a base of 190 and 1830 in 2013.

Denmark

The annual number of new cases is considered to have peaked around 1990 due to high-risk behaviours and gradually decreased as interventions aimed at drug treatment centres and prisons became available in the late 1990s. Voluntary blood donation without financial compensation as well as strict exclusion and quarantine criteria for donors are believed to have limited the spread of the virus from reaching the wider population [82, 83]. Additionally, needle exchange programmes, opium substitution therapy and immunization against hepatitis B have had an impact on keeping co-infection with hepatitis B and HIV low [41].

Back-calculating from estimates of “new” IDU incidence of approximately 575 persons a year (2009) [84] and assuming that 50% of IDU were chronically infected with HCV provided an estimated rate of 288 new viremic cases per year. This was adjusted by an additional 5% to
account for imported cases (migrants), resulting in 303 new viremic cases annually. In 2013, it was estimated that there were 350 new infections.

The total number of viremic infections peaked in 2006, with 21,400 cases, declined to 20,900 (16,700–22,500) by 2013 and is forecasted to further decline to 17,200 by 2030. The number of HCC cases in 2013 was estimated at 90 cases and was forecasted to increase by 140% by 2030. Similarly, the number of liver-related deaths will increase by 130% from a base of 80, while decompensated cirrhosis and compensated cirrhosis infections will increase 110% and 95% from a base of 230 and 1870 in 2013.

Egypt

The annual number of new cases was based upon expert consensus and validated using predicted ranges for incidence from other analyses [85]. The estimated peak number of new cases occurred in 1970, with a high rate of annual new cases thereafter, given ongoing transmission through nosocomial and other routes [86]. There were an estimated 168,600 new cases in 2013.

The total number of viremic infections peaked in 2002, with 6,539,000 cases, declined to 5,979,800 (4,566,900–6,946,600) cases by 2013 and is forecasted to further decline by 26% by 2030. The number of HCC cases in 2013 was estimated at 16,050 new infections.

The total number of viremic infections peaked in 2016, at 7% above the 2013 base of 137,200, and will increase 0.6% from 2013 to 2030. Compensated cirrhosis infections will peak in 2021 at 7% above the 2013 base of 626,160 and will decrease 2% during 2013–2030.

England

The annual number of new cases is considered to have peaked in 1990 due to a contaminated blood supply and then decreased as a result of blood screening. A second peak around 2000 was modelled due to continued IDU behaviours, based on self-reported needle sharing from 1991 to 2011 [87]. IDU is still the most common route of transmission, accounting for 90% of laboratory reported cases between 1996 and 2012 [55]. In 2013, it was estimated that there were 3980 new infections.

The total number of viremic infections peaked in 2007, with 153,000 cases, declined to 144,000 (103,000–174,000) by 2013 and is forecasted to further decline to 83,700 by 2030. The number of HCC cases in 2013 was estimated at 410 cases and was forecasted to increase by 125% by 2030. Similarly, the number of liver-related deaths will increase by 100% from a base of 390, while decompensated cirrhosis and compensated cirrhosis infections will increase 60% and 55% from a base of 860 and 9500 in 2013.

France

Annual incidence was derived from data from a US study [81] that was adjusted to match outputs from a French...
<table>
<thead>
<tr>
<th></th>
<th>Australia</th>
<th>Austria</th>
<th>Belgium</th>
<th>Brazil</th>
<th>Canada</th>
<th>Czech Republic</th>
<th>Denmark</th>
<th>Egypt</th>
<th>England</th>
<th>France</th>
<th>Germany</th>
<th>Portugal</th>
<th>Spain</th>
<th>Sweden</th>
<th>Switzerland</th>
<th>Turkey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viremic HCV Infections</td>
<td></td>
</tr>
<tr>
<td>2013 Est.</td>
<td>233 000</td>
<td>25 400</td>
<td>67 100</td>
<td>1 940 000</td>
<td>252 000</td>
<td>42 500</td>
<td>20 900</td>
<td>5 980 000</td>
<td>144 000</td>
<td>195 000</td>
<td>267 000</td>
<td>125 000</td>
<td>473 000</td>
<td>40 600</td>
<td>82 700</td>
<td>514 000</td>
</tr>
<tr>
<td>2030 Est.</td>
<td>251 000</td>
<td>13 900</td>
<td>47 700</td>
<td>1 250 000</td>
<td>209 000</td>
<td>42 200</td>
<td>17 200</td>
<td>4 420 000</td>
<td>83 700</td>
<td>85 100</td>
<td>121 000</td>
<td>87 400</td>
<td>285 000</td>
<td>31 900</td>
<td>63 200</td>
<td>352 000</td>
</tr>
<tr>
<td>% Change</td>
<td>5</td>
<td>(45)</td>
<td>(30)</td>
<td>(35)</td>
<td>(15)</td>
<td>0</td>
<td>(20)</td>
<td>(25)</td>
<td>(40)</td>
<td>(55)</td>
<td>(55)</td>
<td>(30)</td>
<td>(40)</td>
<td>(20)</td>
<td>(25)</td>
<td>(30)</td>
</tr>
<tr>
<td>HCC cases</td>
<td></td>
</tr>
<tr>
<td>2013 Est.</td>
<td>590</td>
<td>110</td>
<td>300</td>
<td>9710</td>
<td>730</td>
<td>90</td>
<td>90</td>
<td>16 100</td>
<td>410</td>
<td>1770</td>
<td>1530</td>
<td>1150</td>
<td>2210</td>
<td>270</td>
<td>460</td>
<td>2230</td>
</tr>
<tr>
<td>2030 Est.</td>
<td>2030</td>
<td>150</td>
<td>640</td>
<td>18 900</td>
<td>2090</td>
<td>170</td>
<td>210</td>
<td>18 300</td>
<td>920</td>
<td>300</td>
<td>1640</td>
<td>2050</td>
<td>4500</td>
<td>290</td>
<td>740</td>
<td>3770</td>
</tr>
<tr>
<td>% Change</td>
<td>245</td>
<td>35</td>
<td>110</td>
<td>95</td>
<td>190</td>
<td>85</td>
<td>140</td>
<td>15</td>
<td>125</td>
<td>(85)</td>
<td>10</td>
<td>80</td>
<td>105</td>
<td>10</td>
<td>85</td>
<td>70</td>
</tr>
<tr>
<td>Liver related mortality</td>
<td></td>
</tr>
<tr>
<td>2013 Est.</td>
<td>530</td>
<td>100</td>
<td>290</td>
<td>9000</td>
<td>720</td>
<td>80</td>
<td>80</td>
<td>33 000</td>
<td>390</td>
<td>1570</td>
<td>1300</td>
<td>890</td>
<td>1940</td>
<td>170</td>
<td>380</td>
<td>2020</td>
</tr>
<tr>
<td>2030 Est.</td>
<td>1740</td>
<td>130</td>
<td>570</td>
<td>16 620</td>
<td>1800</td>
<td>160</td>
<td>180</td>
<td>36 500</td>
<td>770</td>
<td>380</td>
<td>1430</td>
<td>1700</td>
<td>3750</td>
<td>170</td>
<td>650</td>
<td>3420</td>
</tr>
<tr>
<td>% Change</td>
<td>230</td>
<td>25</td>
<td>95</td>
<td>85</td>
<td>150</td>
<td>90</td>
<td>130</td>
<td>10</td>
<td>100</td>
<td>(75)</td>
<td>10</td>
<td>90</td>
<td>95</td>
<td>1</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>** Decompensated cirrhosis**</td>
<td></td>
</tr>
<tr>
<td>2013 Est.</td>
<td>1430</td>
<td>200</td>
<td>820</td>
<td>27 500</td>
<td>1790</td>
<td>190</td>
<td>230</td>
<td>137 000</td>
<td>860</td>
<td>3650</td>
<td>2430</td>
<td>2410</td>
<td>4230</td>
<td>430</td>
<td>1140</td>
<td>5590</td>
</tr>
<tr>
<td>2030 Est.</td>
<td>4150</td>
<td>180</td>
<td>1400</td>
<td>45 000</td>
<td>3370</td>
<td>390</td>
<td>480</td>
<td>136 000</td>
<td>1370</td>
<td>760</td>
<td>2200</td>
<td>4910</td>
<td>6710</td>
<td>360</td>
<td>1790</td>
<td>8820</td>
</tr>
<tr>
<td>% Change</td>
<td>190</td>
<td>(10)</td>
<td>70</td>
<td>65</td>
<td>100</td>
<td>110</td>
<td>(1)</td>
<td>60</td>
<td>(80)</td>
<td>(10)</td>
<td>105</td>
<td>60</td>
<td>(15)</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>** Compensated cirrhosis**</td>
<td></td>
</tr>
<tr>
<td>2013 Est.</td>
<td>13 800</td>
<td>2450</td>
<td>7060</td>
<td>222 000</td>
<td>18 500</td>
<td>1830</td>
<td>1870</td>
<td>626 000</td>
<td>9500</td>
<td>29 100</td>
<td>31 100</td>
<td>17 900</td>
<td>46 200</td>
<td>3890</td>
<td>8520</td>
<td>51 100</td>
</tr>
<tr>
<td>2030 Est.</td>
<td>37 900</td>
<td>2010</td>
<td>11 500</td>
<td>322 000</td>
<td>36 100</td>
<td>3740</td>
<td>3670</td>
<td>611 000</td>
<td>14 700</td>
<td>5770</td>
<td>24 800</td>
<td>25 600</td>
<td>72 700</td>
<td>2430</td>
<td>12 700</td>
<td>71 200</td>
</tr>
<tr>
<td>% Change</td>
<td>175</td>
<td>(20)</td>
<td>65</td>
<td>45</td>
<td>105</td>
<td>95</td>
<td>(2)</td>
<td>55</td>
<td>(80)</td>
<td>(20)</td>
<td>45</td>
<td>55</td>
<td>(10)</td>
<td>50</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
HCV model [12]. The estimated peak number of new cases occurred in 1989, with IDU and blood transfusion identified as risk factors associated with infection [56]. There were an estimated 4200 new cases in 2013.

The total number of viremic infections peaked in 2000, with 274,740 cases, declined to 195,220 (80,650–201,100) cases by 2013 and is forecasted to further decline by 56% by 2030. The number of HCC cases will peak at 1790 cases in 2014 and was forecasted to decrease by 83% from 2013 to 2030. Similarly, the number of liver-related deaths will peak in 2015 at 1630 deaths and will decrease by 76% from 2013 to 2030. Cases of decompensated cirrhosis will peak at 3670 cases in 2014 and will decrease 79% from 2013 to 2030. Cases of compensated cirrhosis peaked at 29,100 cases in 2013 and will decrease 80% from 2013 to 2030.

© 2014 John Wiley & Sons Ltd
Germany
Today, IDU serves as the primary risk factor for HCV; however, this has not always been the case. In 1978–1979, 2867 young women received HCV genotype 1b-contaminated anti-D immunoglobulin during pregnancy [88]. The single-source outbreak was contained within this cohort, which has since been well documented and followed up [88–90]. Prior to 1990, when blood screening was introduced, individuals were predominantly infected with HCV via blood transfusions with contaminated blood. Once blood screening was initiated, the number of acute infections began to decrease; however, high-risk IDU behaviours allowed for continued infection. In 2013, it was estimated that there were 4980 new infections.

Individuals entering the country with an HCV infection have also influenced the historical distribution of new cases. Waves of immigration from the former Soviet Union,
Turkey and other Mediterranean countries are thought to have contributed to the estimated 27–37% of infected individuals reporting a nationality other than German [57,91,92]. Predominant nationalities include Russian (19–24%), Eastern European (11–15%) and Turkish (4–6%) [57,91,92]. A study conducted among Turks living in

© 2014 John Wiley & Sons Ltd
Turkey and Turks living in Germany found that the anti-HCV prevalence is similar among both groups, indicating that the HCV prevalence among immigrants may be best estimated by the prevalence of their home country [9,10]. In 2012, there were more than seven million foreign residents and naturalizations [93,94]. Of these, an estimated
55% were of Turkish origin and 12.5% originated from a post-Soviet state. Region-specific estimates of HCV prevalence from Hope 2013 and Mohd Hanafiah 2013 were used to estimate the viremic HCV prevalence among immigrants and naturalized citizens [1,34]. In total, 140 000–167 000 foreign cases of viremic HCV were estimated in 2012. This corresponds to ~34% of the total cases of viremic HCV.

The total number of viremic infections peaked in 2003, with 315 000 cases, declined to 267 000 (152 000–383 000) by 2013 and is forecasted to further decline to 121 000 by 2030. The number of HCC cases in 2013 was estimated at 1530 cases and was forecasted to increase by 10% by 2030. Similarly, the number of liver-related deaths will increase by 10% from a base of 1300. Decompensated cirrhosis and compensated cirrhosis infections will peak in 2021 and 2019, at 10% above the 2013 base of 2430 and 31 090, and will then decrease to 10% and 20% of base.

Portugal

To estimate variations in annual incidence over time, historical facts related to the main means of HCV transmission were considered and correlated with available data on HIV diagnosis among IDU [95]. The estimated peak number of new cases occurred in 1992. There were an estimated 810 new cases in 2013.

The total number of viremic infections peaked in 2002, with 137 000 cases, declined to 125 400 (97 000–132 000) cases by 2013 and is forecasted to further decline by 30% by 2030. The number of HCC cases in 2013 was estimated at 1150 and was forecasted to increase by 80% by 2030. Similarly, the number of liver-related deaths will increase by 90% from 890 deaths in 2013. Cases of decompensated and compensated cirrhosis will increase by 105% and 45% from a base of 2410 and 17 920 cases in 2013, respectively.

Spain

The annual number of new cases is considered to have peaked in 1991 before the implementation of blood screening protocols and began to decrease thereafter. It is believed that the number of new cases arising annually is relatively stable, in the light of continued transmission through nosocomial transmission. In 2013, there were an estimated 2810 new cases of HCV.

In 2013, the total number of viremic infections was estimated at 473 000 (371 000–546 000), and it was forecasted to have peaked at 530 000 cases in 2003 before declining to 285 000 by 2030. The number of HCC cases in 2013 was estimated at 2210 cases, and it was forecasted to increase by 105% by 2030. The number of liver-related deaths will increase by 95% from a base of 1940, while decompensated cirrhosis and compensated cirrhosis will increase 60% and 55% from a base of 4230 and 46 200 in 2013.

Sweden

The spread of HCV infection started comparatively late, near the end of the 1960s, with culmination in the 1970s as a result of increased IDU [96,97]. In the early 1990s, the number of new infections decreased gradually, but reached a plateau around the early 2000s. In 2013, it was estimated that there were 1400 new viremic infections.

The total number of viremic infections peaked in 2003, with 43 900 cases, declined to 40 600 (18 000–46 000) by 2013 and is forecasted to further decline to 31 900 by 2030. The number of HCC cases in 2013 was estimated at 270 cases and was forecasted to increase by 10% by 2030. Similarly, the number of liver-related deaths will increase by 1% from a base of 170. Decompensated cirrhosis and compensated cirrhosis infections will peak in 2016 and 2020, at 20% and 5% above the 2013 base of 430 and 3890, and will then decrease to 15% and 10% of base.

Switzerland

Hepatitis C virus transmission peaked in the 1990s as a result of contaminated blood products, but decreased sharply once blood screening came into effect. Today, transmission of HCV occurs primarily through IDU [98]. In addition, the number of HCV cases is significantly influenced through immigration of individuals from HCV endemic countries [99–101].

In 2013, there were approximately 1050 (700–1100) new cases of HCV, of which an estimated 700 cases resulted from immigration [101]. From 2002 to 2011, 711 cases of acute HCV were declared in the country [102]. Assuming these declarations occurred primarily among symptomatic cases, and that only one in four cases of HCV are symptomatic [100], we estimated the true number of new infections to be around 3560 over the 10-year span. In the same period, it was estimated that as many as 7000 chronic HCV carriers migrated to the country [1,101,104]. Annually, this translates to 355 acute cases and 700 cases entering the country.

The total number of viremic infections peaked in 1996, with 88 600 cases, declined to 82 700 (37 300–93 000) by 2013 and is forecasted to further decline to 63 200 by 2030. The number of HCC cases in 2013 was estimated at 400 cases and was forecasted to increase by 85% by 2030. Similarly, the number of liver-related deaths will increase by 70% from a base of 380, while decompensated cirrhosis and compensated cirrhosis infections will increase 55% and 50% from a base of 1140 and 8520 in 2013.
Turkey

The annual number of new cases was considered to have peaked in 1991 and began to steadily decrease thereafter. The number of new cases was relatively stable in the light of low rates of IDU. In 2013, there were an estimated 4910 new cases of HCV. This estimate included an increase due to immigration from former Soviet Republics with higher HCV prevalence.

In 2013, the total number of viremic infections was estimated at 514 000 (317 000–540 000), and it was forecasted to have peaked at 611 000 cases in 1998 before declining to 352 000 by 2030. The number of HCC cases in 2013 was estimated at 2230 cases, and it was forecasted to increase by 70% percentage by 2030. Similarly, the number of liver-related deaths will increase by 70% from a base of 2020, while decompensated and compensated cirrhosis will increase 60% and 40% from a base of 5590 and 51 100 in 2013.

DISCUSSION

The previous publication [4] reported the historical number of total infections, viremic infections, diagnosed and treated cases. However, as the size of these populations changed over time, it was difficult to compare data from different countries and estimate treatment and diagnosis rates. In this study, the size of all populations was forecasted for 2013 using a mathematical model described above.

The total number of HCV infections reported here will be lower than those reported elsewhere, as this study focused on estimating the number of viremic cases in the population after taking into account all age groups, mortality, new infections and cured patients. For example, the HCV prevalence in Egypt was reported to be 14.7% in 15–59 year olds in 2008 [52], and the prevalence after adjusting for younger and older individuals was estimated at 12% [4]. However, only two-thirds of the infected population was viremic, resulting in a viremic prevalence of 8.5% in 2008. After taking into consideration mortality, new infections and cured patients, the 2013 viremic prevalence was estimated at 7.3% (Table 2). Although the viremic prevalence declined by 1.2%, the actual number of cases decreased by only 300 000 cases. The increase in Egypt’s population in the last five years was responsible for some of the decline in estimated HCV prevalence [104].

The model took care to consider all key parameters that drive disease burden, to allow consistent estimates. It is important to note that the objective of this model was to develop forecasts consistent with best available data. However, the goal was not to develop accurate forecasts. The latter would require consideration of variables that were beyond the scope of this work, including policy and macroeconomic factors. Simplifying assumptions, as outlined in the methodology section, occurred and all attempts were made to provide full transparency. Table 2 and Fig. 2 provide sufficient data to support the conclusions stated here. For example, Fig. 2 shows that a large portion of the infected population in Egypt is older than in many other countries due to the time of peak infection. Table 2 shows that an estimated 168 400 new infections occurred in 2013, of which 102 300 went on to have chronic hepatitis C (CHC). In the same year, 31 200 cases were cured and 153 500 individuals with HCV died, resulting in a decline of 82 400 in the number of infections in 2013 alone.

As shown in Table 2, viremic HCV prevalence ranged from 0.3% in England to 7.3% in Egypt, with the highest diagnosis rate represented by countries with a centralized registry (Australia, Austria, Canada, Denmark, France, Germany, Sweden and Switzerland). Egypt, Brazil and Turkey were estimated to have the lowest diagnosis rate (15–16%), while Australia and Sweden estimated that more than 80% of their infected population has already been diagnosed. In addition, it was estimated that 0.5–4.6% of the infected population is newly diagnosed each year, with the lower end of the range represented by Brazil and the higher end of the range represented by France. France also has the highest treatment rate, with 5.2% of the infected population treated annually. This was followed by Germany at 4.7%, Austria at 4.2% and England at 3.8%. Of the countries studied, Denmark, Brazil, Portugal and Turkey had the lowest treatment rate (0.5–0.8%).

The mortality (all-cause and liver-related) was driven by the age of the infected population (Fig. 2) and risk factors

<table>
<thead>
<tr>
<th>Country</th>
<th>Current number of new cases</th>
<th>Number of new cases required</th>
<th>% increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>8800</td>
<td>7810</td>
<td>−11</td>
</tr>
<tr>
<td>Austria</td>
<td>580</td>
<td>1310</td>
<td>126</td>
</tr>
<tr>
<td>Belgium</td>
<td>910</td>
<td>2330</td>
<td>156</td>
</tr>
<tr>
<td>Brazil</td>
<td>12 700</td>
<td>55 310</td>
<td>336</td>
</tr>
<tr>
<td>Canada</td>
<td>5600</td>
<td>9430</td>
<td>68</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1400</td>
<td>1260</td>
<td>−10</td>
</tr>
<tr>
<td>Denmark</td>
<td>350</td>
<td>630</td>
<td>80</td>
</tr>
<tr>
<td>Egypt</td>
<td>168 600</td>
<td>378 058</td>
<td>125</td>
</tr>
<tr>
<td>England</td>
<td>4000</td>
<td>7515</td>
<td>88</td>
</tr>
<tr>
<td>France</td>
<td>4200</td>
<td>13 097</td>
<td>212</td>
</tr>
<tr>
<td>Germany</td>
<td>5000</td>
<td>15 320</td>
<td>206</td>
</tr>
<tr>
<td>Portugal</td>
<td>810</td>
<td>9029</td>
<td>1015</td>
</tr>
<tr>
<td>Spain</td>
<td>2800</td>
<td>16 590</td>
<td>493</td>
</tr>
<tr>
<td>Sweden</td>
<td>1400</td>
<td>1910</td>
<td>36</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1050</td>
<td>2360</td>
<td>125</td>
</tr>
<tr>
<td>Turkey</td>
<td>5300</td>
<td>17 400</td>
<td>228</td>
</tr>
</tbody>
</table>
(Table 2). The older populations had a higher all-cause mortality rate. In addition, the disease progression rate increased with age (Table 1), and older individuals were more likely to have more advanced liver disease and associated liver-related deaths. As stated in the methodology section, active IDU cases also had a higher mortality rate due to the high-risk behaviour associated with injection drug use. Table 2 presents the percentage of the infected population who are actively injecting drugs. The all-cause mortality was adjusted accordingly for this portion of the population.

In each country, the details of the current treatment protocols were gathered. For the purpose of the model, it was assumed that the number of treated patients, eligibility, the number of newly diagnosed cases, SVR and treated patient segments would remain constant between now and 2030. This was not meant to be a realistic scenario, but was rather a baseline that could be used to compare the impact of new strategies to manage the future disease burden [105]. Thus, this work does not imply that the current treatment paradigm will remain as it is today. Instead, the scenarios shown here represent what would be the outcome if the current paradigm stayed the same.

This analysis forecasted that the total number of HCV infections is expected to decline in 2013–2030, except for the Czech Republic, which will remain flat (Fig. 3 and Table 3). As shown in Fig. 2, the infected population in the Czech Republic is younger than other countries due to the later entrance of the epidemic, owing to geographical barriers, limited immigration from endemic countries and a delayed surge in IDU [4]. The age distribution of the HCV-infected population was determined from reported age and distribution, described in more detail elsewhere [4]. The model was calibrated to fit the historical data, and the outputs shown here were the result of aging of the infected population after taking into account new infections, mortality and cured. Countries where IDU was a key risk factor (e.g. Australia, Canada, Czech Republic, Denmark, England and Sweden) had a younger age distribution relative to the other countries studied, as most new infections occurred in young individuals in their early twenties and thirties. The same was true of countries where most of the HCV infections occurred recently (e.g. Czech Republic and Portugal). On the other hand, in countries where nosocomial infection was a major risk factor (Egypt and Turkey), an older infected population was observed. The majority of these infections occurred prior to 1990, and the new infections were not limited to youth.

The future number of HCV infections was determined by mortality, the number of cured patients and new cases. The relationship between mortality and the age distribution of the infected population was already discussed. The most dramatic example of the impact of treatment rate on the total number of HCV infections was observed in France, where a high level of treatment with Peg-INF/RBV starting in 2000 led to a marked decrease in the number of infections (Fig. 3). Prior to 2000, standard IFN was used, which had a lower SVR.

While the total number of infections is expected to decline in most countries, the number of cases with more advanced liver diseases is expected to increase (Table 3 and Figs 3 and 4). As the infected population ages, HCV-infected individuals will advance to cirrhosis, decompensated cirrhosis and hepatocellular carcinoma (HCC). As shown in Fig. 4, the number of HCC and decompensated cirrhosis is expected to increase across the board with the exception of France. France was a noted exception among the countries studied. It was estimated that 10 100 F2-F4 cases are treated in 2013 at an average SVR rate of 60%. If the current treatment rate and efficacy continued in the future, the patient pool advancing to HCC and decompensated cirrhosis would be depleted. In other countries (Austria, Egypt, Germany and Sweden), the number of HCC and decompensated cirrhotic individuals will peak before 2030. This is due to the age of the infected population (Egypt), where mortality overtakes disease progression or is the result of a high treatment rate that prevents progression of patients (Austria, Germany and Sweden). Austria represents a special case, where a high number of liver transplants in the HCV-infected population leads to similar numbers of decompensated cirrhotic and HCC cases (Fig. 4).

There were a number of limitations that could impact the outcomes from this study. The model used the annual number of new cases and tracked their progression over time. As described earlier, distribution of new cases from 1950 to the year of available data was back-calculated using relative incidence and allocation of the new cases by age and gender. This methodology was surprisingly robust. The combination of known prevalence and the corresponding age and gender distribution provided a very limited number of solutions that could match published data. In addition, if there were two HCV prevalence estimates, it was possible to estimate the number of new infections required to match the observed decline or increase [85]. The end result was an estimated number of HCV infections in a given year that matched published data [4] both in terms of total cases and the age/gender distribution. However, it was more difficult to estimate the number of new infections after the year of known prevalence. In every country, an analysis of the key risk factors was used to estimate the more recent number of new infections. Factors considered were new HCV infection among IDU, continued nosocomial infection and impact of immigration on the new cases of HCV. A linear trend was used to forecast future annual number of new cases. However, published data [87] show an erratic number of new infections among IDU. A limitation of this study is the assumption that the number of new cases will remain constant or linear after 2013. Higher number of new infections could result in higher total number of infections in 2030.
An analysis was conducted to identify the annual number of new cases to keep the total number of HCV infections constant in 2013 and 2030. The results are shown in Table 4. In some countries (Australia, Czech Republic and Sweden), very little or no increase in new cases is required to keep the total number of infections constant. In other countries, the annual number of infections has to more than double to see a flat number of HCV infections.

A further limitation of this analysis is the assumption that sufficient numbers of diagnosed patients will be available for treatment. In reality, as the diagnosis rate increases, it will become more difficult to find undiagnosed patients. In addition, diagnosed patients may not have easy access to care. Thus, the ability of a country to treat its HCV population may be limited by the number of available diagnosed eligible patients.

In addition, the model does not consider the progression of cured HCV patients. Studies have shown that more advanced patients may continue their disease progression after achieving SVR, although at a slower rate [5]. The data presented here may overestimate the reduction in HCC and decompensated cirrhosis cases, as the scope of the analysis was limited to HCV viremic individuals. Another element not addressed by this model is potential contribution of extrahepatic manifestations of HCV infection on all-cause mortality.

In conclusion, this study demonstrated that the total number of HCV infections is projected to decline in nearly every country studied due to a reduction in risk factors for new infections (e.g. screening of blood supply), aging of the infected population and the corresponding increase in mortality, and treatment of infected individuals. However, even though the total number of infected individuals is expected to decline, those who remain infected are expected to progress to more advanced stages of liver disease, and thus a sharp increase in HCC, liver-related deaths, decompensated cirrhosis and cirrhosis cases are expected. Thus, the HCV disease burden will not be controlled by the current treatment paradigm. Increased treatment and/or higher efficacy therapies are needed to keep the number of HCV individuals with advanced liver diseases and liver-related deaths from increasing. This suggests that strategies are required to manage the expected increase in HCV disease burden.

ACKNOWLEDGEMENTS

We are grateful to Daniela De Angelis, Ross Harris and Helen Harris at Public Health England for providing us with their calculated HCV progression rates prior to publication. Their progression rates by age cohort were instrumental in developing our estimates. We would also like to thank Rosie Thein for spending time with us discussing her elegant model for HCV progression rate. We would not have been able to get here without her help and guidance.

Sylvie Deuffic-Burban, Henri Leleu and Martin Blachier were instrumental with our analysis of France’s data. We are also grateful to Virginie Masserey, Jean-Luc Richard and Christian Schaetti of the Federal Office of Public Health (FOPH), who were incredibly generous with their time and data. A number of experts in Portugal provided us with their time and insights. We would like to thank the following individuals for their contribution – Dr. Alexandre Lourenço, Prof. Helena Cortez-Pinto, Dr. João Goulão, Luís Mendão, Prof. Paulo Ferrinho and Pedro Pita Barros. This project was supported by Gilead Sciences.

DISCLOSURES

H. Razavi, E. Gower, S.J. Hindman, K. Murphy, K. Pasini and C. Estes are employees of the Center for Disease Analysis (CDA).

I. Waked has served as a speaker for Hoffman La Roche, Merck, BMS, GSK, Bayer and Minapharm; has served on advisory boards for Janssen, Hoffman La Roche, Merck, Abbott, Novartis, GSK, Minapharm and Evapharm; and has acted as a principal investigator in clinical trials for Hoffman La Roche, BMS, GSK and Bayer.

R.P. Myers has received research support, consulting and/or speaking fees from Gilead, Merck, Roche, Vertex, Janssen, Boehringer-Ingelheim, Idenix, AbbVie and GlaxoSmithKline.

W. Vogel has served on a speakers bureau and received travel grants from Roche, Novartis, BMS and Gilead.

S. Aleman has given lectures with honoraria or been a consultant to Roche, MSD, Janssen, Gilead, GlaxoSmithKline and AbbVie, and has received research funding from Gilead.

M. Bilodeau has received research support, consulting and/or speaking fees from Gilead, Merck, Novartis, Vertex, GlaxoSmithKline, Synageva, Astellas and Bayer.

P. Bruggmann has served as advisor and speaker for, and has received project and research grants from Roche, MSD, Janssen, AbbVie, Gilead, Viif and BMS.

M. Buti has acted as an investigator on studies for Gilead, Janssen, MSD and AbbVie.

J.L. Calleja has given lectures and received grants from Gilead, MSD and Janssen; and has received non-financial support from Gilead, outside of the submitted work.

M.E. Cramp has sat on viral hepatitis advisory boards for Gilead, Janssen, Merck, Boehringer Ingelheim and Roche.

G.J. Dore has served on advisory boards for Roche, Merck, Janssen, Gilead, Bristol-Myers Squibb and AbbVie; has received honorarium from Roche, Merck, Janssen, Gilead, Bristol-Myers Squibb and AbbVie; has received research grants from Roche, Merck, Janssen, Gilead, Bristol-Myers Squibb, Vertex, Boehringer Ingelheim and AbbVie; and has received travel sponsorship from Roche, Merck, Janssen, Gilead and Bristol-Myers Squibb.

A.S. Duberg has given lectures with honoraria or been a consultant to Roche, MSD, Janssen and Gilead, and has received research grants from Roche.

© 2014 John Wiley & Sons Ltd
K. Falconer has received honoraria and research grants from Gilead Sciences and Roche.

J. García-Samaniego has received grants from Roche and has acted as consultant for Roche, Gilead, Janssen, Boehringer Ingelheim and AbbVie, outside of the submitted work.

M. Gschwantler has served as an advisor for Vertex/Tibotec, MSD, BMS, Gilead and GlaxoSmithKline Pharma; and as a speaker for Roche Austria, Vertex/Tibotec, MSD, BMS, Gilead and GlaxoSmithKline Pharma.

M. Käber has given lectures with honoraria from Roche, Janssen, MSD and Reckitt Benckiser.

K.D.E. Kaita has received consulting and/or speaking fees from Gilead, Merck, Roche, Vertex, Bristol-Myers Squibb, Boehringer-Ingelheim, Janssen and AbbVie.

A. Kautz is the Policy Director of the European Liver Patients Association, Sint-Truiden, Belgium.

M. Krajden has received research support from Roche, Siemens, Hologic (Gen-Probe), Merck and Boehringer-Ingelheim.

W. Laleman has served as a consultant for MSD, Roche, Gore, Norgine and Gilead.

R.T. Marinho has served as an occasional speaker and advisory board member for Bayer, AbbVie, Gilead, MSD, BMS, Roche and Janssen.

P. Marotta has received research support, consulting and/or speaking fees from Gilead, Merck, Vertex, Boehringer-Ingelheim, Astellas, AbbVie and Novartis.

C. Moreno has received speaker or advisor for AbbVie, MSD, Janssen, Bristol-Myers Squibb and Gilead Sciences pharmaceutical companies; and has received research grants from MSD, Janssen, Astellas, Novartis, Gilead Sciences and Roche pharmaceutical companies.

F. Negro has served as a consultant for Roche and MSD, an advisor for Roche, MSD, Gilead, Novartis, Janssen and Boehringer Ingelheim, and has received unrestricted research grants from Roche, Gilead and Novartis.

A.L.H. Øvrehus has served as a consultant for Gilead Sciences.

A. Ramji has received research support, consulting and/or speaking fees from Gilead, Merck, Roche, Vertex, Janssen, Boehringer-Ingelheim, Novartis, AbbVie, Bristol-Myers Squibb and GlaxoSmithKline.

S.K. Roberts has served as a consultant advisor to BMS, Gilead, AbbVie, Roche, MSD and Janssen.

W.M. Rosenberg has served on advisory boards and as a speaker for Gilead, Roche, MSD, Janssen, GSK, Siemens and AbbVie; and is a stock holder of iQur Limited.

S.D. Ryder has served as an advisory board member and speaker for Gilead, Boehringer and MSD.

R. Sarmento-Castro has given oral presentations and served as an advisory board member for Boehringer, Roche, Gilead Sciences, AbbVie, Janssen and Merck Sharp & Dohme.

M. Sherman has received consulting and/or speaking fees from Gilead, Vertex, Merck, Janssen, AbbVie and Boehringer-Ingelheim.

A. Zekry has served on advisory boards for Gilead, MSD and Janssen.

M. Cornberg has received lecture and consultant fees from Roche Pharma, Roche Diagnostics, Gilead, Merck / MSD Sharp & Dohme, Bristol Myers-Squibb, AbbVie and Novartis; and has received grant support from Roche Pharma, Roche Diagnostics, Gilead and Merck / MSD Sharp & Dohme.

B. Müllhaupt has served as an advisory board member for Roche, MSD, Janssen Therapeutics, AbbVie, Boehringer Ingelheim, Gilead and BMS; has served as a consultant for Gilead and AbbVie; and has received research grants from Roche and Gilead.

P. Ståkel has received consulting fees from MSD, Gilead, and Norgine and grant support from Roche, Gilead, MSD and Janssen.

A.J. Thompson has served in a consulting or advisory capacity for Merck, Roche, Janssen, Bristol-Myers Squibb, Glaxo-Smith-Kline, AbbVie and Springbank; has received research or grant support from Merck, Roche and Gilead Sciences; and has received speaker’s fees from Merck, Roche, Gilead Sciences and Bristol-Myers Squibb.

P. Van Damme acts as chief and principal investigator for vaccine trials conducted on behalf of the University of Antwerp, for which the University obtains research grants from vaccine manufacturers; speaker’s fees for presentations on vaccines are paid directly to an educational fund held by the University of Antwerp. PVD receives no personal remuneration for this work.

I. van Thiel is a member of the Scientific Advisory Board of the European Liver Patients Association, Sint-Truiden, Belgium.

D. Vandijck is a professor at Hasselt University and Ghent University.

H. Wedemeyer has received honoraria from Abbott, Abb-Vie, Biolex, BMS, Boehringer Ingelheim, Eiger Pharmaceuticals, Falk Foundations, Gilead, IDS, Jf/Janssen-Cilag/Janssen TE, Medgenics, Merck/Schering-Plough, Novartis, Novira, Roche, Roche Diagnostics, Siemens, Transgene and ViiV; and has received research grants from Abbott, BMS, Gilead, Merck, Novartis, Roche, Roche Diagnostics and Siemens.

REFERENCES

59 Negreiros J, Magalhães A. [Estimates of the prevalence of problem drug users in Portugal based on data on treatment] Estimativas da prevalência de consumidores prob-
lemáticos de drogas en Portugal

74 Narkotikasituationen i Danmark The Illegal Drug Situation in Denmark. 2011.

91 Lutz T, Boeker K, Moog G et al. Differences in Demographics and Treatment Outcome of Chronic Hepatitis C (CHC) Patients of Different European Origin Treated with Peginterferon alfa-2a (40KDA) and Ribavirin (PEG/RBV). 46th Annual Meeting of the European Association for the Study of the Liver (EASL), March 30-April 3 2011, Berlin, Germany.

101 Negro F. Divisions of Clinical Pathology and of Gastroenterology and Hepatology, University Hospital, Geneva, Switzerland. HCV Migrant Input in Switzerland. Conversation with: Hindman, SJ. Center for Disease Analysis, Louisville, Colorado, USA, 2014.